123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- # coding=utf-8
- from scipy.spatial import distance as dist
- from imutils import perspective
- from imutils import contours
- import numpy as np
- import argparse
- import imutils
- import cv2
- import time
- # 定義一個中點函數,後面會用到
- def midpoint(ptA, ptB):
- return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
- # 讀取輸入圖片
- image = cv2.imread("test3.jpg")
- # 建立一個黑色背景的圖片
- bg_img = np.zeros((image.shape[0], image.shape[1] // 2, 3), np.uint8)
- # 設定正方形的邊長
- length = int(2 / 2.54 * image.shape[1] / 2)
- # 畫出正方形
- cv2.rectangle(bg_img, (bg_img.shape[1] // 2 - length // 2, bg_img.shape[0] // 2 - length // 2),
- (bg_img.shape[1] // 2 + length // 2, bg_img.shape[0] // 2 + length // 2), (255, 255, 255), 2)
- # 將原始圖片與正方形圖案合併在一起
- image = np.concatenate((bg_img, image), axis=1)
- cv2.imshow('Result', image)
- cv2.waitKey(0)
- # 輸入圖片灰度化
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- # 對灰度圖片執行高斯濾波
- gray = cv2.GaussianBlur(gray, (7, 7), 0)
- # 對濾波結果做邊緣檢測獲取目標
- edged = cv2.Canny(gray, 50, 100)
- # 使用膨脹和腐蝕操作進行閉合對象邊緣之間的間隙
- edged = cv2.dilate(edged, None, iterations=1)
- edged = cv2.erode(edged, None, iterations=1)
- # 在邊緣圖像中尋找物體輪廓(即物體)
- cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)
- cnts = imutils.grab_contours(cnts)
- # 對輪廓按照從左到右進行排序處理
- (cnts, _) = contours.sort_contours(cnts)
- # 初始化 'pixels per metric'
- pixelsPerMetric = None
- # 循環遍歷每一個輪廓
- for c in cnts:
- # 如果當前輪廓的面積太少,認為可能是噪聲,直接忽略掉
- if cv2.contourArea(c) < 100:
- continue
- # 根據物體輪廓計算出外切矩形框
- orig = image.copy()
- box = cv2.minAreaRect(c)
- box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
- box = np.array(box, dtype="int")
- # 按照top-left, top-right, bottom-right, bottom-left的順序對輪廓點進行排序,並繪製外切的BB,用綠色的線來表示
- box = perspective.order_points(box)
- cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
- # 繪製BB的4個頂點,用紅色的小圓圈來表示
- for (x, y) in box:
- cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
- # 分別計算top-left 和top-right的中心點和bottom-left 和bottom-right的中心點坐標
- (tl, tr, br, bl) = box
- (tltrX, tltrY) = midpoint(tl, tr)
- (blbrX, blbrY) = midpoint(bl, br)
- # 分別計算top-left和top-right的中心點和top-righ和bottom-right的中心點坐標
- (tlblX, tlblY) = midpoint(tl, bl)
- (trbrX, trbrY) = midpoint(tr, br)
- # 繪製BB的4條邊的中心點,用藍色的小圓圈來表示
- cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
- cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
- cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
- cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
- # 在中心點之間繪製直線,用紫紅色的線來表示
- cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
- (255, 0, 255), 2)
- cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
- (255, 0, 255), 2)
- # 計算兩個中心點之間的歐氏距離,即圖片距離
- dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
- dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
- # 初始化測量指標值,參考物體在圖片中的寬度已經通過歐氏距離計算得到,參考物體的實際大小已知
- if pixelsPerMetric is None:
- pixelsPerMetric = dB / (1.968503 *2.54) #大約5公分=1.968503英吋
- # 計算目標的實際大小(寬和高),用英尺來表示
- dimA = dA / pixelsPerMetric
- dimB = dB / pixelsPerMetric
- # 在圖片中繪製結果
- cv2.putText(orig, "{:.1f}cm".format(dimB),
- (int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,
- 0.65, (255, 255, 255), 2)
- cv2.putText(orig, "{:.1f}cm".format(dimA),
- (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
- 0.65, (255, 255, 255), 2)
- print('長:',"{:.1f}cm".format(dimB))
- print('寬:',"{:.1f}cm".format(dimA))
- now_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime(time.time()))
- save_pic_name = now_time + '_' + '.jpg'
- cv2.imwrite(save_pic_name, orig)
- # 顯示結果
- #cv2.namedWindow('Image', 0)
- cv2.namedWindow("Image", cv2.WINDOW_NORMAL)
- cv2.resizeWindow("Image", 800, 600)
- cv2.imshow("Image", orig)
- cv2.waitKey(0)
|