|
@@ -1,127 +1,131 @@
|
|
|
-# coding=utf-8
|
|
|
-from scipy.spatial import distance as dist
|
|
|
-from imutils import perspective
|
|
|
-from imutils import contours
|
|
|
-import numpy as np
|
|
|
-import argparse
|
|
|
-import imutils
|
|
|
-import cv2
|
|
|
-import time
|
|
|
-
|
|
|
-
|
|
|
-# 定義一個中點函數,後面會用到
|
|
|
-def midpoint(ptA, ptB):
|
|
|
- return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
|
|
-
|
|
|
-
|
|
|
-# 讀取輸入圖片
|
|
|
-image = cv2.imread("test3.jpg")
|
|
|
-# 建立一個黑色背景的圖片
|
|
|
-bg_img = np.zeros((image.shape[0], image.shape[1] // 2, 3), np.uint8)
|
|
|
-
|
|
|
-# 設定正方形的邊長
|
|
|
-length = int(2 / 2.54 * image.shape[1] / 2)
|
|
|
-
|
|
|
-# 畫出正方形
|
|
|
-cv2.rectangle(bg_img, (bg_img.shape[1] // 2 - length // 2, bg_img.shape[0] // 2 - length // 2),
|
|
|
- (bg_img.shape[1] // 2 + length // 2, bg_img.shape[0] // 2 + length // 2), (255, 255, 255), 2)
|
|
|
-
|
|
|
-# 將原始圖片與正方形圖案合併在一起
|
|
|
-image = np.concatenate((bg_img, image), axis=1)
|
|
|
-cv2.imshow('Result', image)
|
|
|
-cv2.waitKey(0)
|
|
|
-
|
|
|
-# 輸入圖片灰度化
|
|
|
-gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
-# 對灰度圖片執行高斯濾波
|
|
|
-gray = cv2.GaussianBlur(gray, (7, 7), 0)
|
|
|
-
|
|
|
-# 對濾波結果做邊緣檢測獲取目標
|
|
|
-edged = cv2.Canny(gray, 50, 100)
|
|
|
-# 使用膨脹和腐蝕操作進行閉合對象邊緣之間的間隙
|
|
|
-edged = cv2.dilate(edged, None, iterations=1)
|
|
|
-edged = cv2.erode(edged, None, iterations=1)
|
|
|
-
|
|
|
-# 在邊緣圖像中尋找物體輪廓(即物體)
|
|
|
-cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
|
|
|
- cv2.CHAIN_APPROX_SIMPLE)
|
|
|
-cnts = imutils.grab_contours(cnts)
|
|
|
-
|
|
|
-# 對輪廓按照從左到右進行排序處理
|
|
|
-(cnts, _) = contours.sort_contours(cnts)
|
|
|
-# 初始化 'pixels per metric'
|
|
|
-pixelsPerMetric = None
|
|
|
-
|
|
|
-# 循環遍歷每一個輪廓
|
|
|
-for c in cnts:
|
|
|
- # 如果當前輪廓的面積太少,認為可能是噪聲,直接忽略掉
|
|
|
- if cv2.contourArea(c) < 100:
|
|
|
- continue
|
|
|
-
|
|
|
- # 根據物體輪廓計算出外切矩形框
|
|
|
- orig = image.copy()
|
|
|
- box = cv2.minAreaRect(c)
|
|
|
- box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
|
|
- box = np.array(box, dtype="int")
|
|
|
-
|
|
|
- # 按照top-left, top-right, bottom-right, bottom-left的順序對輪廓點進行排序,並繪製外切的BB,用綠色的線來表示
|
|
|
- box = perspective.order_points(box)
|
|
|
- cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
|
|
-
|
|
|
- # 繪製BB的4個頂點,用紅色的小圓圈來表示
|
|
|
- for (x, y) in box:
|
|
|
- cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
|
|
|
-
|
|
|
- # 分別計算top-left 和top-right的中心點和bottom-left 和bottom-right的中心點坐標
|
|
|
- (tl, tr, br, bl) = box
|
|
|
- (tltrX, tltrY) = midpoint(tl, tr)
|
|
|
- (blbrX, blbrY) = midpoint(bl, br)
|
|
|
-
|
|
|
- # 分別計算top-left和top-right的中心點和top-righ和bottom-right的中心點坐標
|
|
|
- (tlblX, tlblY) = midpoint(tl, bl)
|
|
|
- (trbrX, trbrY) = midpoint(tr, br)
|
|
|
-
|
|
|
- # 繪製BB的4條邊的中心點,用藍色的小圓圈來表示
|
|
|
- cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
|
|
|
- cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
|
|
|
- cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
|
|
|
- cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
|
|
|
-
|
|
|
- # 在中心點之間繪製直線,用紫紅色的線來表示
|
|
|
- cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
|
|
|
- (255, 0, 255), 2)
|
|
|
- cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
|
|
|
- (255, 0, 255), 2)
|
|
|
-
|
|
|
- # 計算兩個中心點之間的歐氏距離,即圖片距離
|
|
|
- dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
|
|
|
- dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
|
|
|
-
|
|
|
- # 初始化測量指標值,參考物體在圖片中的寬度已經通過歐氏距離計算得到,參考物體的實際大小已知
|
|
|
- if pixelsPerMetric is None:
|
|
|
- pixelsPerMetric = dB / (1.968503 *2.54) #大約5公分=1.968503英吋
|
|
|
-
|
|
|
- # 計算目標的實際大小(寬和高),用英尺來表示
|
|
|
- dimA = dA / pixelsPerMetric
|
|
|
- dimB = dB / pixelsPerMetric
|
|
|
-
|
|
|
- # 在圖片中繪製結果
|
|
|
- cv2.putText(orig, "{:.1f}cm".format(dimB),
|
|
|
- (int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
- 0.65, (255, 255, 255), 2)
|
|
|
- cv2.putText(orig, "{:.1f}cm".format(dimA),
|
|
|
- (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
- 0.65, (255, 255, 255), 2)
|
|
|
- print('長:',"{:.1f}cm".format(dimB))
|
|
|
- print('寬:',"{:.1f}cm".format(dimA))
|
|
|
-
|
|
|
- now_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime(time.time()))
|
|
|
- save_pic_name = now_time + '_' + '.jpg'
|
|
|
- cv2.imwrite(save_pic_name, orig)
|
|
|
-
|
|
|
- # 顯示結果
|
|
|
- #cv2.namedWindow('Image', 0)
|
|
|
- cv2.namedWindow("Image", cv2.WINDOW_NORMAL)
|
|
|
- cv2.resizeWindow("Image", 800, 600)
|
|
|
- cv2.imshow("Image", orig)
|
|
|
- cv2.waitKey(0)
|
|
|
+# coding=utf-8
|
|
|
+from scipy.spatial import distance as dist
|
|
|
+from imutils import perspective
|
|
|
+from imutils import contours
|
|
|
+import numpy as np
|
|
|
+import argparse
|
|
|
+import imutils
|
|
|
+import cv2
|
|
|
+import time
|
|
|
+
|
|
|
+
|
|
|
+# 定義一個中點函數,後面會用到
|
|
|
+def midpoint(ptA, ptB):
|
|
|
+ return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
|
|
+
|
|
|
+
|
|
|
+# 讀取輸入圖片
|
|
|
+image = cv2.imread("test3.jpg")
|
|
|
+# 建立一個黑色背景的圖片
|
|
|
+bg_img = np.zeros((image.shape[0], image.shape[1] // 2, 3), np.uint8)
|
|
|
+
|
|
|
+# 設定正方形的邊長
|
|
|
+length = int(2 / 2.54 * image.shape[1] / 2)
|
|
|
+
|
|
|
+# 畫出正方形
|
|
|
+cv2.rectangle(bg_img, (bg_img.shape[1] // 2 - length // 2, bg_img.shape[0] // 2 - length // 2),
|
|
|
+ (bg_img.shape[1] // 2 + length // 2, bg_img.shape[0] // 2 + length // 2), (255, 255, 255), 2)
|
|
|
+
|
|
|
+# 將原始圖片與正方形圖案合併在一起
|
|
|
+image = np.concatenate((bg_img, image), axis=1)
|
|
|
+cv2.imshow('Result', image)
|
|
|
+cv2.waitKey(0)
|
|
|
+
|
|
|
+# 輸入圖片灰度化
|
|
|
+gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
+# 對灰度圖片執行高斯濾波
|
|
|
+gray = cv2.GaussianBlur(gray, (7, 7), 0)
|
|
|
+
|
|
|
+# 對濾波結果做邊緣檢測獲取目標
|
|
|
+edged = cv2.Canny(gray, 50, 100)
|
|
|
+# 使用膨脹和腐蝕操作進行閉合對象邊緣之間的間隙
|
|
|
+edged = cv2.dilate(edged, None, iterations=1)
|
|
|
+edged = cv2.erode(edged, None, iterations=1)
|
|
|
+
|
|
|
+# 在邊緣圖像中尋找物體輪廓(即物體)
|
|
|
+cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
|
|
|
+ cv2.CHAIN_APPROX_SIMPLE)
|
|
|
+cnts = imutils.grab_contours(cnts)
|
|
|
+
|
|
|
+# 對輪廓按照從左到右進行排序處理
|
|
|
+(cnts, _) = contours.sort_contours(cnts)
|
|
|
+# 初始化 'pixels per metric'
|
|
|
+pixelsPerMetric = None
|
|
|
+
|
|
|
+# 循環遍歷每一個輪廓
|
|
|
+for c in cnts:
|
|
|
+ # 如果當前輪廓的面積太少,認為可能是噪聲,直接忽略掉
|
|
|
+ if cv2.contourArea(c) < 100:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # 根據物體輪廓計算出外切矩形框
|
|
|
+ orig = image.copy()
|
|
|
+ box = cv2.minAreaRect(c)
|
|
|
+ box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
|
|
+ box = np.array(box, dtype="int")
|
|
|
+
|
|
|
+ # 按照top-left, top-right, bottom-right, bottom-left的順序對輪廓點進行排序,並繪製外切的BB,用綠色的線來表示
|
|
|
+ box = perspective.order_points(box)
|
|
|
+ cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
|
|
+
|
|
|
+ # 繪製BB的4個頂點,用紅色的小圓圈來表示
|
|
|
+ for (x, y) in box:
|
|
|
+ cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
|
|
|
+
|
|
|
+ # 分別計算top-left 和top-right的中心點和bottom-left 和bottom-right的中心點坐標
|
|
|
+ (tl, tr, br, bl) = box
|
|
|
+ (tltrX, tltrY) = midpoint(tl, tr)
|
|
|
+ (blbrX, blbrY) = midpoint(bl, br)
|
|
|
+
|
|
|
+ # 分別計算top-left和top-right的中心點和top-righ和bottom-right的中心點坐標
|
|
|
+ (tlblX, tlblY) = midpoint(tl, bl)
|
|
|
+ (trbrX, trbrY) = midpoint(tr, br)
|
|
|
+
|
|
|
+ # 繪製BB的4條邊的中心點,用藍色的小圓圈來表示
|
|
|
+ cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
|
|
|
+ cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
|
|
|
+ cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
|
|
|
+ cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
|
|
|
+
|
|
|
+ # 在中心點之間繪製直線,用紫紅色的線來表示
|
|
|
+ cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
|
|
|
+ (255, 0, 255), 2)
|
|
|
+ cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
|
|
|
+ (255, 0, 255), 2)
|
|
|
+
|
|
|
+ # 計算兩個中心點之間的歐氏距離,即圖片距離
|
|
|
+ dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
|
|
|
+ dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
|
|
|
+
|
|
|
+ # 初始化測量指標值,參考物體在圖片中的寬度已經通過歐氏距離計算得到,參考物體的實際大小已知
|
|
|
+ if pixelsPerMetric is None:
|
|
|
+ pixelsPerMetric = dB / (1.968503 *2.54) #大約5公分=1.968503英吋
|
|
|
+
|
|
|
+ # 計算目標的實際大小(寬和高),用英尺來表示
|
|
|
+ dimA = dA / pixelsPerMetric
|
|
|
+ dimB = dB / pixelsPerMetric
|
|
|
+
|
|
|
+ # 在圖片中繪製結果
|
|
|
+ cv2.putText(orig, "{:.1f}cm".format(dimB),
|
|
|
+ (int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
+ 0.65, (255, 255, 255), 2)
|
|
|
+ cv2.putText(orig, "{:.1f}cm".format(dimA),
|
|
|
+ (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
+ 0.65, (255, 255, 255), 2)
|
|
|
+ print('長:',"{:.1f}cm".format(dimB))
|
|
|
+ print('寬:',"{:.1f}cm".format(dimA))
|
|
|
+
|
|
|
+ now_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime(time.time()))
|
|
|
+ save_pic_name = now_time + '_' + '.jpg'
|
|
|
+ cv2.imwrite(save_pic_name, orig)
|
|
|
+
|
|
|
+ path = 'size_output.txt'
|
|
|
+ with open(path, 'a') as f:
|
|
|
+ f.write('長:'+"{:.1f}cm".format(dimB)+' 寬:'+"{:.1f}cm".format(dimA) + '\n')
|
|
|
+
|
|
|
+ # 顯示結果
|
|
|
+ #cv2.namedWindow('Image', 0)
|
|
|
+ cv2.namedWindow("Image", cv2.WINDOW_NORMAL)
|
|
|
+ cv2.resizeWindow("Image", 800, 600)
|
|
|
+ cv2.imshow("Image", orig)
|
|
|
+ cv2.waitKey(0)
|