1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- import pyrealsense2 as rs
- import numpy as np
- import cv2
- import supervision as sv
- from ultralytics import YOLO
- import time
- # 啟動 RealSense 相機
- pipeline = rs.pipeline()
- config = rs.config()
- config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
- config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
- pipeline.start(config)
- # profile = config.resolve(pipeline)
- # # Declare sensor object and set options
- # depth_sensor = profile.get_device().first_depth_sensor()
- # depth_sensor.set_option(rs.option.visual_preset, 5) # 5 is short range, 3 is low ambient light
- # 初始化 YOLO 模型
- model = YOLO('yolov8n-seg.pt')
- byte_tracker = sv.ByteTrack()
- align_to = rs.stream.color
- align = rs.align(align_to)
- try:
- while True:
- # 讀取 RealSense 相機影像
- frames = pipeline.wait_for_frames()
- aligned_frames = align.process(frames)
- depth_frame = aligned_frames.get_depth_frame()
- color_frame = aligned_frames.get_color_frame()
- if not depth_frame or not color_frame:
- continue
- depth_image = np.asanyarray(depth_frame.get_data())
- color_image = np.asanyarray(color_frame.get_data())
- depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_WINTER)
- # 進行物體檢測
- result = model(color_image)[0]
- detections = sv.Detections.from_ultralytics(result)
- detections_tracker = byte_tracker.update_with_detections(detections=detections)
- polygon_annotator = sv.PolygonAnnotator()
- annotated_frame = polygon_annotator.annotate(
- scene=color_image.copy(), detections=detections)
- mask_annotator = sv.MaskAnnotator()
- annotated_frame = mask_annotator.annotate(
- scene=annotated_frame, detections=detections
- )
- labels = [
- f"#{tracker_id} {result.names[class_id]} {confidence:.2f}"
- for class_id, tracker_id, confidence
- in zip(detections_tracker.class_id, detections_tracker.tracker_id, detections_tracker.confidence)
- ]
- label_annotator = sv.LabelAnnotator()
- annotated_frame = label_annotator.annotate(
- scene=annotated_frame,
- detections=detections_tracker,
- labels=labels
- )
- if detections:
- position = sv.Position.CENTER_OF_MASS
- xy = detections.get_anchors_coordinates(anchor=position)
- #print('postion',xy)
- for detection_idx in range(len(detections)):
- #print(xy)
- center = (int(xy[detection_idx,0]), int(xy[detection_idx,1]))
- cv2.circle(annotated_frame, center,radius=3, color=(255,255,0), thickness=-1)
- #print(center[0],center[1])
- # 在畫面上顯示距離信息和檢測結果
- text_depth = "Depth value at ({x},{y}): {:.2f} meters".format(
- depth_frame.get_distance(int(xy[detection_idx,0]), int(xy[detection_idx,1])),x = int(xy[detection_idx,0]),y=int(xy[detection_idx,1]))
- annotated_frame = cv2.putText(annotated_frame, text_depth, (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
- (0, 0, 255), 2)
- print("距離:",depth_frame.get_distance(int(xy[detection_idx,0]), int(xy[detection_idx,1])))
- #annotated_frame = cv2.circle(annotated_frame, (320, 240), 4, (0, 0, 255), -1)
- annotated_frame = np.hstack((annotated_frame, depth_colormap))
- # 顯示畫面
- cv2.imshow('RealSense', annotated_frame)
- key = cv2.waitKey(1)
- if key & 0xFF == ord('q') or key == 27:
- cv2.destroyAllWindows()
- break
- finally:
- pipeline.stop()
|