123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- # coding=utf-8
- # 导入一些后续需要使用到的python包
- # 可能需要 pip install imutils
- from scipy.spatial import distance as dist
- from imutils import perspective
- from imutils import contours
- import numpy as np
- import argparse
- import imutils
- import cv2
- # 定义一个中点函数,后面会用到
- def midpoint(ptA, ptB):
- return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
- # 设置一些需要改变的参数
- ap = argparse.ArgumentParser()
- ap.add_argument("-i", "--image", required=True,
- help="path to the input image")
- ap.add_argument("-w", "--width", type=float, required=True,
- help="width of the left-most object in the image (in inches)")
- args = vars(ap.parse_args())
- # 读取输入图片
- image = cv2.imread(args["image"])
- # 输入图片灰度化
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- # 对灰度图片执行高斯滤波
- gray = cv2.GaussianBlur(gray, (7, 7), 0)
- # 对滤波结果做边缘检测获取目标
- edged = cv2.Canny(gray, 50, 100)
- # 使用膨胀和腐蚀操作进行闭合对象边缘之间的间隙
- edged = cv2.dilate(edged, None, iterations=1)
- edged = cv2.erode(edged, None, iterations=1)
- # 在边缘图像中寻找物体轮廓(即物体)
- cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)
- cnts = imutils.grab_contours(cnts)
- # 对轮廓按照从左到右进行排序处理
- (cnts, _) = contours.sort_contours(cnts)
- # 初始化 'pixels per metric'
- pixelsPerMetric = None
- # 循环遍历每一个轮廓
- for c in cnts:
- # 如果当前轮廓的面积太少,认为可能是噪声,直接忽略掉
- if cv2.contourArea(c) < 100:
- continue
- # 根据物体轮廓计算出外切矩形框
- orig = image.copy()
- box = cv2.minAreaRect(c)
- box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
- box = np.array(box, dtype="int")
- # 按照top-left, top-right, bottom-right, bottom-left的顺序对轮廓点进行排序,并绘制外切的BB,用绿色的线来表示
- box = perspective.order_points(box)
- cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
- # 绘制BB的4个顶点,用红色的小圆圈来表示
- for (x, y) in box:
- cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
- # 分别计算top-left 和top-right的中心点和bottom-left 和bottom-right的中心点坐标
- (tl, tr, br, bl) = box
- (tltrX, tltrY) = midpoint(tl, tr)
- (blbrX, blbrY) = midpoint(bl, br)
- # 分别计算top-left和top-right的中心点和top-righ和bottom-right的中心点坐标
- (tlblX, tlblY) = midpoint(tl, bl)
- (trbrX, trbrY) = midpoint(tr, br)
- # 绘制BB的4条边的中心点,用蓝色的小圆圈来表示
- cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
- cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
- cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
- cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
- # 在中心点之间绘制直线,用紫红色的线来表示
- cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
- (255, 0, 255), 2)
- cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
- (255, 0, 255), 2)
- # 计算两个中心点之间的欧氏距离,即图片距离
- dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
- dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
- # 初始化测量指标值,参考物体在图片中的宽度已经通过欧氏距离计算得到,参考物体的实际大小已知
- if pixelsPerMetric is None:
- pixelsPerMetric = dB / args["width"]
- # 计算目标的实际大小(宽和高),用英尺来表示
- dimA = dA / pixelsPerMetric
- dimB = dB / pixelsPerMetric
- # 在图片中绘制结果
- cv2.putText(orig, "{:.1f}in".format(dimB),
- (int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,
- 0.65, (255, 255, 255), 2)
- cv2.putText(orig, "{:.1f}in".format(dimA),
- (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
- 0.65, (255, 255, 255), 2)
- # 显示结果
- cv2.imshow("Image", orig)
- cv2.waitKey(0)
|