|
@@ -0,0 +1,542 @@
|
|
|
+from ctypes import *
|
|
|
+from pyueye import ueye
|
|
|
+import numpy as np
|
|
|
+import cv2
|
|
|
+import sys
|
|
|
+import ctypes
|
|
|
+import struct
|
|
|
+import threading
|
|
|
+import time
|
|
|
+import datetime
|
|
|
+import os
|
|
|
+import pymysql
|
|
|
+import tensorflow as tf
|
|
|
+import requests as req
|
|
|
+import sys
|
|
|
+import mysql.connector
|
|
|
+from mysql.connector import Error
|
|
|
+from urllib import parse
|
|
|
+from PIL import Image
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+#setting
|
|
|
+#-------------------------------------------------------------------------------
|
|
|
+hCam = ueye.HIDS(0)
|
|
|
+sensor_info = ueye.SENSORINFO()
|
|
|
+camera_info = ueye.CAMINFO()
|
|
|
+pcImageMemory = ueye.c_mem_p()
|
|
|
+MemID = ueye.int()
|
|
|
+rectAOI = ueye.IS_RECT()
|
|
|
+rectAOI.s32X = 100
|
|
|
+rectAOI.s32Y = 100
|
|
|
+rectAOI.s32Width = 800
|
|
|
+rectAOI.s32Height = 600
|
|
|
+pitch = ueye.INT()
|
|
|
+nBitsPerPixel = ueye.INT(24) #24: bits per pixel for color mode; take 8 bits per pixel for monochrome
|
|
|
+channels = 3 #3: channels for color mode(RGB); take 1 channel for monochrome
|
|
|
+m_nColorMode = ueye.INT() # Y8/RGB16/RGB24/REG32
|
|
|
+bytes_per_pixel = int(nBitsPerPixel / 8)
|
|
|
+dZoomValue = ueye.DOUBLE()
|
|
|
+#fps = ueye.DOUBLE(60) # set you want fps
|
|
|
+Real_FPS =ueye.DOUBLE() # get real fps
|
|
|
+exposure_value = ueye.DOUBLE(10) # set exposure value
|
|
|
+cbSizeOfParam = 8
|
|
|
+BurstSize = ueye.UINT(1)
|
|
|
+status_new=0
|
|
|
+status_old=0
|
|
|
+trigger_delay_time = ueye.UINT(0)
|
|
|
+#-------------------------------------------------------------------------------
|
|
|
+
|
|
|
+
|
|
|
+print("START")
|
|
|
+# Starts the driver and establishes the connection to the camera
|
|
|
+nRet = ueye.is_InitCamera(hCam, None)
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ ueye.is_InitCamera(hCam, None)
|
|
|
+ #print("is_InitCamera ERROR")
|
|
|
+
|
|
|
+nRet = ueye.is_SetExternalTrigger(hCam, ueye.IS_SET_TRIGGER_HI_LO)
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_SetExternalTrigger ERROR")
|
|
|
+
|
|
|
+nRet = ueye.is_SetTriggerDelay(hCam,trigger_delay_time)
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_SetTriggerDelay ERROR")
|
|
|
+print(nRet)
|
|
|
+
|
|
|
+nRet = ueye.is_Trigger(hCam, ueye.IS_TRIGGER_CMD_SET_BURST_SIZE,BurstSize,ueye.sizeof(BurstSize))
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_Trigger ERROR")
|
|
|
+
|
|
|
+# Reads out the data hard-coded in the non-volatile camera memory and writes it to the data structure that cInfo points to
|
|
|
+nRet = ueye.is_GetCameraInfo(hCam, camera_info)
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_GetCameraInfo ERROR")
|
|
|
+
|
|
|
+# You can query additional information about the sensor type used in the camera
|
|
|
+nRet = ueye.is_GetSensorInfo(hCam, sensor_info)
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_GetSensorInfo ERROR")
|
|
|
+'''
|
|
|
+nRet = ueye.is_ResetToDefault(hCam)
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_ResetToDefault ERROR")
|
|
|
+'''
|
|
|
+# Set display mode to DIB
|
|
|
+nRet = ueye.is_SetDisplayMode(hCam, ueye.IS_SET_DM_DIB)
|
|
|
+
|
|
|
+# Set the right color mode
|
|
|
+if int.from_bytes(sensor_info.nColorMode.value, byteorder='big') == ueye.IS_COLORMODE_BAYER:
|
|
|
+ # setup the color depth to the current windows setting
|
|
|
+ ueye.is_GetColorDepth(hCam, nBitsPerPixel, m_nColorMode)
|
|
|
+ bytes_per_pixel = int(nBitsPerPixel / 8)
|
|
|
+ print("IS_COLORMODE_BAYER: ", )
|
|
|
+ print("\tm_nColorMode:", m_nColorMode)
|
|
|
+ print("\tnBitsPerPixel:", nBitsPerPixel)
|
|
|
+ print("\tbytes_per_pixel:", bytes_per_pixel)
|
|
|
+
|
|
|
+elif int.from_bytes(sensor_info.nColorMode.value, byteorder='big') == ueye.IS_COLORMODE_CBYCRY:
|
|
|
+ # for color camera models use RGB32 mode
|
|
|
+ m_nColorMode = ueye.IS_CM_BGRA8_PACKED
|
|
|
+ nBitsPerPixel = ueye.INT(32)
|
|
|
+ bytes_per_pixel = int(nBitsPerPixel / 8)
|
|
|
+ print("IS_COLORMODE_CBYCRY: ", )
|
|
|
+ print("\tm_nColorMode: \t\t", m_nColorMode)
|
|
|
+ print("\tnBitsPerPixel: \t\t", nBitsPerPixel)
|
|
|
+ print("\tbytes_per_pixel: \t\t", bytes_per_pixel)
|
|
|
+
|
|
|
+elif int.from_bytes(sensor_info.nColorMode.value, byteorder='big') == ueye.IS_COLORMODE_MONOCHROME:
|
|
|
+ # for color camera models use RGB32 mode
|
|
|
+ m_nColorMode = ueye.IS_CM_MONO8
|
|
|
+ nBitsPerPixel = ueye.INT(8)
|
|
|
+ bytes_per_pixel = int(nBitsPerPixel / 8)
|
|
|
+ print("IS_COLORMODE_MONOCHROME: ", )
|
|
|
+ print("\tm_nColorMode: \t\t", m_nColorMode)
|
|
|
+ print("\tnBitsPerPixel: \t\t", nBitsPerPixel)
|
|
|
+ print("\tbytes_per_pixel: \t\t", bytes_per_pixel)
|
|
|
+else:
|
|
|
+ # for monochrome camera models use Y8 mode
|
|
|
+ m_nColorMode = ueye.IS_CM_MONO8
|
|
|
+ nBitsPerPixel = ueye.INT(8)
|
|
|
+ bytes_per_pixel = int(nBitsPerPixel / 8)
|
|
|
+ print("else")
|
|
|
+
|
|
|
+'''
|
|
|
+nRet = ueye.is_AOI(hCam, ueye.IS_AOI_IMAGE_SET_AOI, rectAOI, ueye.sizeof(rectAOI))
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_AOI ERROR")
|
|
|
+'''
|
|
|
+# Can be used to set the size and position of an "area of interest"(AOI) within an image
|
|
|
+nRet = ueye.is_AOI(hCam, ueye.IS_AOI_IMAGE_GET_AOI, rectAOI, ueye.sizeof(rectAOI))
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_AOI ERROR")
|
|
|
+width = rectAOI.s32Width
|
|
|
+height = rectAOI.s32Height
|
|
|
+
|
|
|
+print("Exposure value : {}".format(exposure_value))
|
|
|
+print("Maximum image width:", width)
|
|
|
+print("Maximum image height:", height)
|
|
|
+# ---------------------------------------------------------------------------------------------------------------------------------------
|
|
|
+# Allocates an image memory for an image having its dimensions defined by width and height and its color depth defined by nBitsPerPixel
|
|
|
+nRet = ueye.is_AllocImageMem(hCam, width, height, nBitsPerPixel, pcImageMemory, MemID)
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_AllocImageMem ERROR")
|
|
|
+else:
|
|
|
+ # Makes the specified image memory the active memory
|
|
|
+ nRet = ueye.is_SetImageMem(hCam, pcImageMemory, MemID)
|
|
|
+ if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_SetImageMem ERROR")
|
|
|
+ else:
|
|
|
+ # Set the desired color mode
|
|
|
+ nRet = ueye.is_SetColorMode(hCam, m_nColorMode)
|
|
|
+
|
|
|
+# Activates the camera's live video mode (free run mode)
|
|
|
+nRet = ueye.is_FreezeVideo(hCam, ueye.IS_DONT_WAIT)
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_FreezeVideo ERROR")
|
|
|
+
|
|
|
+# Enables the queue mode for existing image memory sequences
|
|
|
+nRet = ueye.is_InquireImageMem(hCam, pcImageMemory, MemID, width, height, nBitsPerPixel, pitch)
|
|
|
+if nRet != ueye.IS_SUCCESS:
|
|
|
+ print("is_InquireImageMem ERROR")
|
|
|
+else:
|
|
|
+ print("Press q to leave the programm")
|
|
|
+# ---------------------------------------------------------------------------------------------------------------------------------------
|
|
|
+Count=0
|
|
|
+
|
|
|
+
|
|
|
+def cut_rectangle():
|
|
|
+ image_size = 150
|
|
|
+ # img = cv2.imread("D:\\fatwolf\\company_files\\opencv\\2021-05-05-11_13_47.png")
|
|
|
+ # img = cv2.imread("D:\\fatwolf\\company_files\\opencv\\2.png")
|
|
|
+ #img = cv2.imread("C:\\Users\\User\\Desktop\\tfcoffebean\\test\\1.png")
|
|
|
+ # img = cv2.imread("C:\\Users\\User\\Desktop\\IDS\\p\\12033_248.png")
|
|
|
+ # img_size = img.shape
|
|
|
+ # print(img_size)
|
|
|
+ img = cv2.imread('D:\\fatwolf\\company_files\\python_code\\test_code\\test_pic\\12033_267.png')
|
|
|
+
|
|
|
+ # img = cv2.resize(img1,(968,548))
|
|
|
+ point_color = (0, 0, 255)
|
|
|
+ command1 = "SELECT Name,X, X1 ,Y ,Y1 FROM `cut` WHERE Name LIKE 'roi1'"
|
|
|
+ l = conn.cursor()
|
|
|
+ l.execute(command1)
|
|
|
+ conn.commit()
|
|
|
+ r1 = l.fetchone()
|
|
|
+
|
|
|
+ # print(r1[0])
|
|
|
+ count = 1
|
|
|
+ def roi1():
|
|
|
+ # x = r1[1]
|
|
|
+ # x1 = r1[2]
|
|
|
+ # y = r1[3]
|
|
|
+ # y1 = r1[4]
|
|
|
+ #x = 743
|
|
|
+ #x1 = 892
|
|
|
+ #y = 17
|
|
|
+ #y1 = 164
|
|
|
+ x = 1257
|
|
|
+ x1 = 1355
|
|
|
+ y = 185
|
|
|
+ y1 = 278
|
|
|
+ i = 1
|
|
|
+ i1 = 1
|
|
|
+ i2 = 1
|
|
|
+ i3 = 1
|
|
|
+ i4 = 1
|
|
|
+ i5 = 1
|
|
|
+ i6 = 1
|
|
|
+ number = count
|
|
|
+
|
|
|
+ for i in range(6):
|
|
|
+ roi = img[y:y1, x:x1]
|
|
|
+ cv2.rectangle(img, (x, y), (x1, y1), point_color, 1)
|
|
|
+ roi = cv2.resize(roi, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
|
|
|
+ cv2.imwrite('D:\\fatwolf\\company_files\\python_code\\test_code\\test_pic\\pic' + '00_' + str(number) + '.png', roi)
|
|
|
+ number = number + 1
|
|
|
+ y = y + 150
|
|
|
+ y1 = y1 + 150
|
|
|
+ x = x + 145
|
|
|
+ x1 = x1 + 145
|
|
|
+ y = 1355
|
|
|
+ y1 = 278
|
|
|
+ '''
|
|
|
+ for i in range(6):
|
|
|
+ roi = img[y:y1, x:x1]
|
|
|
+ cv2.rectangle(img, (x, y), (x1, y1), point_color, 1)
|
|
|
+ roi = cv2.resize(roi, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
|
|
|
+ cv2.imwrite('D:\\fatwolf\\company_files\\paper_coffee\\pic\\' + '00_' + str(number) + '.png', roi)
|
|
|
+ number = number + 1
|
|
|
+ x = x + 150
|
|
|
+ x1 = x1 + 150
|
|
|
+ y = y + 145
|
|
|
+ y1 = y1 + 145
|
|
|
+ x = 1257
|
|
|
+ x1 = 1355
|
|
|
+ '''
|
|
|
+ '''
|
|
|
+ for i1 in range(6):
|
|
|
+ roi = img[y:y1, x:x1]
|
|
|
+ cv2.rectangle(img, (x, y), (x1, y1), point_color, 1)
|
|
|
+ roi = cv2.resize(roi, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
|
|
|
+ cv2.imwrite('D:\\fatwolf\\company_files\\paper_coffee\\pic\\' + '00_' + str(number) + '.png', roi)
|
|
|
+ number = number + 1
|
|
|
+ x = x + 150
|
|
|
+ x1 = x1 + 150
|
|
|
+ y = y + 145
|
|
|
+ y1 = y1 + 145
|
|
|
+ x = 743
|
|
|
+ x1 = 892
|
|
|
+
|
|
|
+ for i2 in range(6):
|
|
|
+ roi = img[y:y1, x:x1]
|
|
|
+ cv2.rectangle(img, (x, y), (x1, y1), point_color, 1)
|
|
|
+ roi = cv2.resize(roi, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
|
|
|
+ cv2.imwrite('D:\\fatwolf\\company_files\\paper_coffee\\pic\\' + '00_' + str(number) + '.png', roi)
|
|
|
+ number = number + 1
|
|
|
+ x = x + 150
|
|
|
+ x1 = x1 + 150
|
|
|
+ y = y + 145
|
|
|
+ y1 = y1 + 145
|
|
|
+ x = 743
|
|
|
+ x1 = 892
|
|
|
+
|
|
|
+ for i3 in range(6):
|
|
|
+ roi = img[y:y1, x:x1]
|
|
|
+ cv2.rectangle(img, (x, y), (x1, y1), point_color, 1)
|
|
|
+ roi = cv2.resize(roi, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
|
|
|
+ cv2.imwrite('D:\\fatwolf\\company_files\\paper_coffee\\pic\\' + '00_' + str(number) + '.png', roi)
|
|
|
+ number = number + 1
|
|
|
+ x = x + 150
|
|
|
+ x1 = x1 + 150
|
|
|
+ y = y + 145
|
|
|
+ y1 = y1 + 145
|
|
|
+ x = 743
|
|
|
+ x1 = 892
|
|
|
+
|
|
|
+ for i4 in range(6):
|
|
|
+ roi = img[y:y1, x:x1]
|
|
|
+ cv2.rectangle(img, (x, y), (x1, y1), point_color, 1)
|
|
|
+ roi = cv2.resize(roi, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
|
|
|
+ cv2.imwrite('D:\\fatwolf\\company_files\\paper_coffee\\pic\\' + '00_' + str(number) + '.png', roi)
|
|
|
+ number = number + 1
|
|
|
+ x = x + 150
|
|
|
+ x1 = x1 + 150
|
|
|
+ y = y + 145
|
|
|
+ y1 = y1 + 145
|
|
|
+ x = 743
|
|
|
+ x1 = 892
|
|
|
+
|
|
|
+ for i5 in range(6):
|
|
|
+ roi = img[y:y1, x:x1]
|
|
|
+ cv2.rectangle(img, (x, y), (x1, y1), point_color, 1)
|
|
|
+ roi = cv2.resize(roi, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
|
|
|
+ cv2.imwrite('D:\\fatwolf\\company_files\\paper_coffee\\pic\\' + '00_' + str(number) + '.png', roi)
|
|
|
+ number = number + 1
|
|
|
+ x = x + 150
|
|
|
+ x1 = x1 + 150
|
|
|
+ y = y + 145
|
|
|
+ y1 = y1 + 145
|
|
|
+ x = 743
|
|
|
+ x1 = 892
|
|
|
+
|
|
|
+ for i6 in range(6):
|
|
|
+ roi = img[y:y1, x:x1]
|
|
|
+ cv2.rectangle(img, (x, y), (x1, y1), point_color, 1)
|
|
|
+ roi = cv2.resize(roi, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
|
|
|
+ cv2.imwrite('D:\\fatwolf\\company_files\\paper_coffee\\pic\\' + '00_' + str(number) + '.png', roi)
|
|
|
+ number = number + 1
|
|
|
+ x = x + 150
|
|
|
+ x1 = x1 + 150
|
|
|
+ y = y + 145
|
|
|
+ y1 = y1 + 145
|
|
|
+ x = 743
|
|
|
+ x1 = 892
|
|
|
+ '''
|
|
|
+ start = datetime.datetime.now()
|
|
|
+ roi1()
|
|
|
+ end = datetime.datetime.now()
|
|
|
+ print("cut_rectangle Run Time:", end - start)
|
|
|
+
|
|
|
+
|
|
|
+def cnn():
|
|
|
+ # data file
|
|
|
+
|
|
|
+ data_dir = r"D:\\fatwolf\\company_files\\python_code\\test_code\\test_pic\\pic"
|
|
|
+
|
|
|
+ print(data_dir)
|
|
|
+ allName = os.listdir(data_dir)
|
|
|
+
|
|
|
+ # train or test
|
|
|
+ train = False
|
|
|
+ # model address
|
|
|
+ model_path = "model/image_model"
|
|
|
+ allTestDataName = []
|
|
|
+
|
|
|
+ def read_data(data_dir):
|
|
|
+ datas = []
|
|
|
+ labels = []
|
|
|
+ fpaths = []
|
|
|
+ for filename in os.listdir(data_dir):
|
|
|
+ fpath = os.path.join(data_dir, filename)
|
|
|
+ allTestDataName.append(filename)
|
|
|
+ image = Image.open(fpath)
|
|
|
+ data = np.array(image) / 255.0
|
|
|
+ label = int(filename.split("_")[0])
|
|
|
+ datas.append(data)
|
|
|
+ labels.append(label)
|
|
|
+ # allTestDataName.append(filename)
|
|
|
+
|
|
|
+ datas = np.array(datas)
|
|
|
+ labels = np.array(labels)
|
|
|
+ allTestDataName.sort(key=lambda x: int(x[:-4]))
|
|
|
+ # print(allTestDataName)
|
|
|
+
|
|
|
+ # print("shape of datas: {}\tshape of labels: {}".format(datas.shape, labels.shape))
|
|
|
+ return allTestDataName, datas, labels
|
|
|
+
|
|
|
+ allTestDataName, datas, labels = read_data(data_dir)
|
|
|
+ # num_classes = len(set(labels))
|
|
|
+ num_classes = 4
|
|
|
+
|
|
|
+ datas_placeholder = tf.compat.v1.placeholder(tf.float32, [None, 150, 150, 3])
|
|
|
+
|
|
|
+ labels_placeholder = tf.compat.v1.placeholder(tf.int32, [None])
|
|
|
+
|
|
|
+ dropout_placeholdr = tf.compat.v1.placeholder(tf.float32)
|
|
|
+
|
|
|
+ conv0 = tf.layers.conv2d(datas_placeholder, 20, 5, activation=tf.nn.relu)
|
|
|
+ pool0 = tf.layers.max_pooling2d(conv0, [2, 2], [2, 2])
|
|
|
+
|
|
|
+ conv1 = tf.layers.conv2d(pool0, 40, 4, activation=tf.nn.relu)
|
|
|
+ pool1 = tf.layers.max_pooling2d(conv1, [2, 2], [2, 2])
|
|
|
+
|
|
|
+ flatten = tf.layers.flatten(pool1)
|
|
|
+
|
|
|
+ fc = tf.layers.dense(flatten, 400, activation=tf.nn.relu)
|
|
|
+
|
|
|
+ dropout_fc = tf.layers.dropout(fc, dropout_placeholdr)
|
|
|
+
|
|
|
+ logits = tf.layers.dense(dropout_fc, num_classes)
|
|
|
+
|
|
|
+ predicted_labels = tf.arg_max(logits, 1)
|
|
|
+
|
|
|
+ losses = tf.nn.softmax_cross_entropy_with_logits(
|
|
|
+ labels=tf.one_hot(labels_placeholder, num_classes),
|
|
|
+ logits=logits
|
|
|
+ )
|
|
|
+ mean_loss = tf.reduce_mean(losses)
|
|
|
+
|
|
|
+ optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=1e-2).minimize(losses)
|
|
|
+
|
|
|
+ saver = tf.compat.v1.train.Saver()
|
|
|
+
|
|
|
+ with tf.compat.v1.Session() as sess:
|
|
|
+
|
|
|
+ if train:
|
|
|
+ print("train mode")
|
|
|
+
|
|
|
+ sess.run(tf.global_variables_initializer())
|
|
|
+
|
|
|
+ train_feed_dict = {
|
|
|
+ datas_placeholder: datas,
|
|
|
+ labels_placeholder: labels,
|
|
|
+ dropout_placeholdr: 0.25
|
|
|
+ }
|
|
|
+ for step in range(500):
|
|
|
+ _, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=train_feed_dict)
|
|
|
+
|
|
|
+ if step % 50 == 0:
|
|
|
+ print("step = {}\tmean loss = {}".format(step, mean_loss_val))
|
|
|
+ saver.save(sess, model_path)
|
|
|
+ print("train done save model{}".format(model_path))
|
|
|
+ else:
|
|
|
+ # print("reloading model")
|
|
|
+ saver.restore(sess, model_path)
|
|
|
+ # print("{}reload model".format(model_path))
|
|
|
+
|
|
|
+ label_name_dict = {
|
|
|
+ 0: "Brokenbeans",
|
|
|
+ 1: "Peaberry",
|
|
|
+ 2: "shellbean",
|
|
|
+ 3: "Worms"
|
|
|
+ }
|
|
|
+ test_feed_dict = {
|
|
|
+ datas_placeholder: datas,
|
|
|
+ labels_placeholder: labels,
|
|
|
+ dropout_placeholdr: 0
|
|
|
+ }
|
|
|
+ predicted_labels_val = sess.run(predicted_labels, feed_dict=test_feed_dict)
|
|
|
+
|
|
|
+ for fpath, real_label, predicted_label in zip(allTestDataName, labels, predicted_labels_val):
|
|
|
+ real_label_name = label_name_dict[real_label]
|
|
|
+ # print("訓練前",real_label_name)
|
|
|
+ predicted_label_name = label_name_dict[predicted_label]
|
|
|
+ # print("訓練後",predicted_label_name)
|
|
|
+ # print("{}\t => {}".format(fpath, predicted_label_name))
|
|
|
+ fpath = os.path.basename(fpath)
|
|
|
+
|
|
|
+ print(f"{fpath}\t => {predicted_label_name}")
|
|
|
+ path1 = 'output.txt'
|
|
|
+ f = open(path1, 'a+')
|
|
|
+ f.write(f"{fpath} => {predicted_label_name}""\n")
|
|
|
+ f.close()
|
|
|
+ if predicted_label_name == "shellbean" or "Peaberry" or "Worms":
|
|
|
+ print("觸發噴嘴")
|
|
|
+ else:
|
|
|
+ print('沒有觸發')
|
|
|
+ '''
|
|
|
+ sqlStuff = "INSERT INTO result(picname,identify)""VALUES (%s,%s)"
|
|
|
+ data = [(fpath, predicted_label_name)]
|
|
|
+ a = conn.cursor()
|
|
|
+ a.executemany(sqlStuff, data)
|
|
|
+ conn.commit()
|
|
|
+
|
|
|
+ try:
|
|
|
+ connection = mysql.connector.connect(
|
|
|
+ host='127.0.0.1', # 主機名稱
|
|
|
+ database='coffee_detection', # 資料庫名稱
|
|
|
+ user='root', # 帳號
|
|
|
+ password='g53743001') # 密碼
|
|
|
+ # 新增資料
|
|
|
+ sql = "INSERT INTO result(picname,identify)""VALUES (%s,%s)"
|
|
|
+ new_data = ("test", "test2")
|
|
|
+ cursor = connection.cursor()
|
|
|
+ cursor.execute(sql, new_data)
|
|
|
+
|
|
|
+ # 確認資料有存入資料庫
|
|
|
+ connection.commit()
|
|
|
+
|
|
|
+ except Error as e:
|
|
|
+ print("資料庫連接失敗:", e)
|
|
|
+
|
|
|
+ finally:
|
|
|
+ if (connection.is_connected()):
|
|
|
+ cursor.close()
|
|
|
+ connection.close()
|
|
|
+
|
|
|
+ '''
|
|
|
+ dirListing = os.listdir(data_dir)
|
|
|
+ # print(len(dirListing))
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+# Continuous image display
|
|
|
+while (nRet == ueye.IS_SUCCESS):
|
|
|
+ # In order to display the image in an OpenCV window we need to...
|
|
|
+ # ...extract the data of our image memory
|
|
|
+ array = ueye.get_data(pcImageMemory, width, height, nBitsPerPixel, pitch, copy=False)
|
|
|
+ frame = np.reshape(array, (height.value, width.value, bytes_per_pixel))
|
|
|
+ #frame = cv2.resize(frame, (1280,1024), fx=0.5, fy=0.5)
|
|
|
+ cv2.imshow("SimpleLive_Python_uEye_OpenCV", frame)
|
|
|
+ trigger_status = ueye.is_SetExternalTrigger(hCam,ueye.IS_GET_TRIGGER_STATUS)
|
|
|
+ status_new = trigger_status
|
|
|
+ print(status_old, status_new)
|
|
|
+
|
|
|
+ if status_old == 1 and status_new == 0:
|
|
|
+ #for i in range(1):
|
|
|
+ now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
|
|
|
+ FileParams = ueye.IMAGE_FILE_PARAMS()
|
|
|
+ FileParams.pwchFileName = "C:/Users/User/Desktop/IDS/test/status04/" + now + ".png"
|
|
|
+ FileParams.nFileType = ueye.IS_IMG_PNG
|
|
|
+ FileParams.ppcImageMem = None
|
|
|
+ FileParams.pnImageID = None
|
|
|
+ FileParams.nQuality = 10
|
|
|
+ nRet1 = ueye.is_ImageFile(hCam, ueye.IS_IMAGE_FILE_CMD_SAVE, FileParams, ueye.sizeof(FileParams))
|
|
|
+ print('take photo')
|
|
|
+ nRet1 = ueye.is_FreezeVideo(hCam, ueye.IS_DONT_WAIT)
|
|
|
+ status_old = status_new
|
|
|
+ start3 = datetime.datetime.now()
|
|
|
+
|
|
|
+ time.sleep(0.3)
|
|
|
+ print(Count)
|
|
|
+ print(nRet)
|
|
|
+ end3 = datetime.datetime.now()
|
|
|
+ print("拍照執行時間:", end3 - start3)
|
|
|
+
|
|
|
+ cut_rectangle()
|
|
|
+ start2 = datetime.datetime.now()
|
|
|
+ cnn()
|
|
|
+ end2 = datetime.datetime.now()
|
|
|
+ print("辨識執行時間:", end2 - start2)
|
|
|
+ #end = datetime.datetime.now()
|
|
|
+
|
|
|
+ #print("完整執行時間:", end - start)
|
|
|
+ print('-----------------------------------------------------------')
|
|
|
+ tf.reset_default_graph()
|
|
|
+
|
|
|
+ # Press q if you want to end the loop
|
|
|
+ if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
|
+ break
|
|
|
+
|
|
|
+# ---------------------------------------------------------------------------------------------------------------------------------------
|
|
|
+# Releases an image memory that was allocated using is_AllocImageMem() and removes it from the driver management
|
|
|
+ueye.is_FreeImageMem(hCam, pcImageMemory, MemID)
|
|
|
+# Disables the hCam camera handle and releases the data structures and memory areas taken up by the uEye camera
|
|
|
+ueye.is_ExitCamera(hCam)
|
|
|
+# Destroys the OpenCv windows
|
|
|
+cv2.destroyAllWindows()
|